Lesson 23a. Double Integrals Over General Regions

0 Warm up - double integrals over rectangles

- Rectangle $R=[a, b] \times[c, d]$

$$
=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

- $\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$ $=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$

Example 1. Find $\int_{0}^{1} \int_{0}^{1}(x+y) d y d x$.

1 General regions

- How about general regions D ?
- Intuition: if $f(x, y) \geq 0$, double integral still represents volume of solid between D and graph of f
- We focus on two types of regions
- Type I regions: lies between two vertical lines and the graphs of two continuous functions of \underline{x}, that is:

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

- Examples:

- If D is a type I region (and f is continuous on D), then
- In the inner integral, x is regarded a constant in $f(x, y)$ and the limits of integration

Example 2. Find $\iint_{D}(x+3) d A$, where D is the region bounded by $y=0$ and $y=x^{2}$, and $x=2$.

- Type II regions: lies between two horizontal lines and the graphs of two continuous functions of \underline{y}, that is:

$$
D=\left\{(x, y) \mid c \leq x \leq d, h_{1}(y) \leq x \leq h_{2}(x)\right\}
$$

- Examples:

- If D is a type II region (and f is continuous on D), then
- In the inner integral, y is regarded a constant in $f(x, y)$ and the limits of integration

Example 3. Find $\iint_{D} y d A$, where D is the triangular region with vertices $(0,0),(2,0),(1,1)$.

2 If we have time...
Example 4. Find $\iint_{D}(x-y) d A$, where D is enclosed by the lines $y=x, x=0$, and $y=1$.

